TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Darrell D. McCant, B.S. Toxicology Division, Office of the Executive Director **Date:** June 16, 2015 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Upwind the Vantage Fort Worth Energy Operating LLC, Payne 1 and 2 site (Latitude 33.2428817, Longitude -97.1724651) in Denton, Denton County, Texas Sample Collected on May 8, 2015, Request Number 1505011 (Lab Sample 1505011-001) ## **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. ## **Background** On May 8, 2015, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigators collected two 30-minute canister samples, upwind and downwind. The downwind sample (Lab Sample 1505006-001) was reviewed in the June 12, 2015 memorandum to Tony Walker et al. This evaluation is the complimentary sample (Lab Sample 1505011-001) collected upwind Vantage Fort Worth Energy Operating LLC, Payne 1 and 2 site in Denton, Denton County, Texas (Latitude 33.2428817, Longitude -97.17224651). Both samples were collected in response to a citizen's complaint of a burnt metallic odor, coughing, difficulty breathing, and hospitalization. The investigator experienced a moderate and constant burnt plastic/metal odor but no health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 80.7°F with a relative humidity of 68.8%, and winds were from the east-southeast (120°) at 0-2.3 miles per hour. The nearest location where the public could have access was between 301 and 500 feet from the possible emission source. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in Tony Walker et al. Page 2 June 16, 2015 this review is provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals. #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-4477 if you have any questions regarding this evaluation. Tony Walker et al. Page 3 June 16, 2015 #### Attachment A #### **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1,3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1,1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1,2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 June 16, 2015 ## **Attachment B** 6/2/2015 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results Request Number: 1505011 | Request Lead:Jaydeep Patel | Region: T04 | Date Rec | ceived: 5/20/2015 | |---|------------------------|----------------|---| | Project(s): Barnett Shale | | | | | Facility(les) Sampled | City | County | Facility Type | | Vantage Fort Worth Energy Operating LLC, Payne I an | Denton | Denton | | | Sample(s) Received | | | | | Field ID Number: 12025050815 Laboratory Sampling Site: Comments: Canister 12025 was used to collect a 30 min Requested Laboratory Procedure(s): | | pled: 05/08/15 | ampled by: Omar Lopez
i 11:32:00 Valid Sample: Yes | | Analysis: AP001VOC Determination of VOC Canisters by GC/MS Using Modi | fied Method TO-15 | | | | Please note that this analytical technique is not of adverse health effects. For questions on the ana (512) 239-1716. For an update on the health eff Division at (512) 239-1795. | dytical procedures ple | ase contact | the laboratory manager at | | Analyst: Ania Mathew | | Date: 6 | 102112
19172 | | Laboratory Manager: Javdeen Patel S | ! | Date: Ol | 102112 | ## Laboratory Analysis Results Request Number: 1505011 Analysis Code: AP001VOC | Lab H) | | | 1503 | 5011-001 | | | | | | | |--|-------|-------------------|------|---|---------|-------|-----------|------|------------------|---------| | Field ID | | -9/61 | 1202 | 5050815 | | | | 3500 | | | | Canister ID | | | | 2025 | | | ON STORES | | | | | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Cong. | SDL | SQL | Analysis
Date | Flags** | | ethans | 3.8 | 0.50 | 1.2 | 5/22/2015 | T | | 1 | - | 1 | 1172 | | ethylene | 0.69 | 0.50 | 1.2 | 5/22/2015 | L,T | | | | | | | acetylene | ND | 0.50 | 1.2 | 5/22/2015 | T | | - | | | 100 | | ргоралс | 1.4 | 0.50 | 1.2 | 5/22/2015 | T | 1 | | | | | | propylene | ND | 0.50 | 1.2 | 5/22/2015 | Т | | | | | | | dichlorodifluoromethans | 0.48 | 0.20 | 0.60 | 5/22/2015 | L | | | | | | | methyl chloride | 1.0 | 0.20 | 0.60 | 5/22/2015 | | 1 | | | | | | sobutane | 0.24 | 0.23 | 1.2 | 5/22/2015 | L | 1 | 330 | | | | | viny) chloride | ND | 0.17 | 0.60 | 5/22/2015 | - 1177 | - | | | 1 1 | | | 1-butene | 0.19 | 0.20 | 0.60 | 5/22/2015 | J | 1 | | | | | | 1,3-butadiene | ND | 0.27 | 0.60 | 5/22/2015 | | 1 | | | | - | | n-butane | 0.57 | 0.20 | 12 | 5/22/2015 | L | 2.55 | | | | | | t-2-butene | ND | 0.18 | 0.60 | 5/22/2015 | | - | - | | | | | bromomethane | 0.02 | 0.27 | 0.60 | 5/22/2015 | J | 1 | | | - 8 | | | p-2-butene | 0.01 | 0.27 | 0.60 | 5/22/2015 | 1 | | | | | | | 3-methyl-1-butene | ND | 0.23 | 0.60 | 5/22/2015 | | + | _ | | | | | sopentane | 0.41 | 0.27 | 2.4 | 5/22/2015 | L | - | | 1 | | | | trichlorofluoromethane | 0.22 | 0.29 | 0.60 | 5/22/2015 | 1 | 1 | | | | | | I-pentens | ND | 0.27 | 0.60 | 5/22/2015 | - | 1 | - | - | 1 3 | | | n-pentane | l ND | 0.27 | 2.4 | 5/22/2015 | | 1 | | | | | | isoprene | 0.44 | 0.27 | 0.60 | 5/22/2015 | L | 1 | | - | | | | NAME AND ADDRESS OF THE OWNER OWNER OF THE OWNER O | I ND | 0.27 | 1.2 | 5/22/2015 | - 40 | - | | - | | | | t-2-pentene | ND | 0.18 | 0.60 | 5/22/2015 | | | - | - | 1 | | | 1,1-dichloroethylene | ND | 0.18 | 1.2 | 5/22/2015 | | 1 | - | - | - | | | c-2-pentene | 0.98 | 0.14 | 0.60 | 5/22/2015 | I. | - | - | - | | - | | methylene ohloride | 0.01 | 0.14 | 0.60 | 5/22/2015 | j | - | - | | | | | 2-methy4-2-butene | I ND | 0.21 | 0.60 | 5/22/2015 | | | - | - | 1 | | | 2,2-dimethylbutane | ND | 0.20 | 0.60 | 5/22/2015 | | 13 | | | | | | cyclopentene | | announced and had | 1.2 | 3/22/2015 | - | - | - | - | | | | 4-methy4-1-pentene | ND | 0.22 | 0,60 | 5/22/2015 | | 42 | - | - | 1 | - | | 1,1-dichlaroethane | ND | | 0.60 | 5/22/2015 | E | - | - | - | | | | cyclopeatane | 0.02 | 0.27 | | 100000000000000000000000000000000000000 | 1 | - | 1 | - | | | | 2,3-dimethylbutane | 0.06 | 0.28 | 1.2 | 5/22/2015 | L | - | | | | - | | 2-methylpentane | 0.53 | 0.27 | 0.60 | 5/22/2015 | - 4 | + | | | | | | 3-methylpentane | ND | 0.23 | 0.60 | 5/22/2015 | | - | - | - | | - | | 2-methyl-1-pentene + 1-hexone | ND | 0.20 | 2.4 | 400000000000000000000000000000000000000 | | | - | | | - | | n-hexage | 1.2 | 0.20 | 1,2 | 5/22/2015 | | + | | - | | - | | chloroform | 0.02 | 0.21 | 0.60 | 5/22/2015 | , | - | | | | - | | t-2-hexene | ND | 0.27 | 1.2 | 5/22/2015 | | - | - | | 1 | | | o-2-bexene | ND | 0.27 | 1.2 | 5/22/2015 | | 1 | | - | | - | | 1,2-dichlaroothuse | 0.01 | 0.27 | 0.60 | 5/22/2015 | 1 | - | - | - | | | | methyloyolopentane | 0.15 | 0,27 | 1.2 | 5/22/2015 | 1 | 1 | - | | | | | 2,4-dimethylpostane | 80.0 | 0.27 | 1.2 | 5/22/2015 | 1 | - | - | - | | | | 1,1,1-trichloroethane | ND | 0.26 | 0.60 | 5/22/2015 | | - | - | - | 1 | | | benzene | 0.32 | 0.27 | 0.60 | 5/22/2015 | L | - | | - | | | | carbon tetraeltleride | 0.09 | 0.27 | 0.60 | 5/22/2015 | J. | | | - | | | | cyclohexane | ND | 0.24 | 9.60 | 5/22/2015 | | 1 | | | | | | 2-methylhexane | 1,3 | 0.27 | 0.60 | 5/22/2015 | | | _ | | | | | 2,3-dimethylpentane | ND | 0.26 | 0.60 | 5/22/2015 | | | I. | | 1 | 2 | ## Laboratory Analysis Results Request Number: 1505011 Analysis Code: AP001VOC | Note: Results are reported in | units of ppby | | | | | | | | | | |-------------------------------|---------------|------|------|------------------|---------|-------|-----|----------|------------------|---------| | Lab ID | 1000011 | | 150 | 5011-001 | | | | | | | | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Conc. | SDL | SQL | Analysis
Date | Flags** | | 3-methylhexane | 1.2 | 0.20 | 0.60 | 5/22/2015 | | | | | | | | 1,2-dichloropropane | ND | 0,17 | 0.60 | 5/22/2015 | -,: | | | | | 100000 | | trichloroethylene | ND | 0.29 | 0,60 | 5/22/2015 | | 1 | | | | | | 2,2,4-trimethylpentane | 0.05 | 0.24 | 0.60 | 5/22/2015 | 1 | | | | | | | 2-chloropentane | ND | 0.27 | 0.60 | 5/22/2015 | | | | | | 8 | | n-heptane | 3.8 | 0.25 | 1.2 | 5/22/2015 | | | | | | | | c-1,3-diohloropropylene | ND | 0.20 | 0.60 | 5/22/2015 | | 1 | | | | | | methylcyclohexane | 2.2 | 0.26 | 1.2 | 5/22/2015 | | | | | | | | t-1,3-dichloropropylene | 0.24 | 0.20 | 0.60 | 5/22/2015 | L | | | 100 | | | | 1,1,2-trichloroethane | ND | 0.21 | 0.60 | 5/22/2015 | | T | | | | | | 2,3,4-trimethylpentane | 0.03 | 0.24 | 1.2 | 5/22/2015 | 1 | | | | | | | toluene | 0.36 | 0.27 | 0.60 | 5/22/2015 | L | i | | | i i | | | 2-methylheptane | 2,1 | 0.20 | 1.2 | 5/22/2015 | | | | | | | | 3-methylhoptane | 1.4 | 0.23 | 1.2 | 5/22/2015 | | 1 | | | | | | 1,2-dibromoethane | ND | 0.20 | 0.60 | 5/22/2015 | | | | | | | | n-octang | 4.3 | 0.19 | 1,2 | 5/22/2015 | | | | | | | | tetrachloroethylene | ND | 0.24 | 0.60 | 5/22/2015 | | | | | | die e | | chlorobenzene | ND | 0.27 | 0.60 | 5/22/2015 | | | | | | | | ethylbenzene | ND | 0.27 | 1,2 | 5/22/2015 | | 1 | | | | | | m & p-xylene | 0.80 | 0.27 | 2.4 | 5/22/2015 | L. | | | | | | | styrene | 0.01 | 0.27 | 1.2 | 5/22/2015 | J | 1 | | | | | | 1,1,2,2-tetrachloroethane | ND | 0.20 | 0.60 | 5/22/2015 | | | | | | | | o-xytene | 0.15 | 0.27 | 1.2 | 5/22/2015 | J | 1 | | | | | | n-monane | 2.2 | 0.22 | 0.60 | 5/22/2015 | | i i | | | | | | isopropylbenzene | 0.01 | 0.24 | 0.60 | 5/22/2015 | 1 | 1 | | | | | | n-propy/benzene | 0.04 | 0.27 | 0.60 | 5/22/2015 | J | | | | | | | m-ethyltoluene | 0.10 | 0.11 | 0.60 | 5/22/2015 | 1 | | | - 1117-3 | | | | p-ethyltoluene | ND | 0.16 | 1.2 | 5/22/2015 | 171 | 1 | 9 | | | | | 1,3,5-trimethylbenzene | 0.22 | 0.25 | 1,2 | 5/22/2015 | I | 1 | | | | | | o-ethyltoluene | ND | 0.13 | 1.2 | 5/22/2015 | 7 | 1 | | 1 | | | | 1,2,4-trimethylbonzene | 0.31 | 0.27 | 0.60 | 5/22/2015 | L | | | | | | | n-decase | 1.8 | 0.27 | 1.2 | 5/22/2015 | - 11 | 1 | | | - 77 | | | 1,2,3-trimethy/benzene | ND | 0.27 | 0.60 | 5/22/2015 | | 1 | | | | | | m-diethylbenzene | 0.01 | 0.27 | 1.2 | 5/22/2015 | 1 | | | | | 1000 | | p-diethylbsnzene | ND | 0.27 | 0.60 | 5/22/2015 | | 1 | | 1 0 | | | | n-undecane | 1.6 | 0.27 | 1.2 | 5/22/2015 | | 1 | | | | | #### Laboratory Analysis Results Request Number: 1505011 Analysis Code: AP001VOC #### Qualifier Notes: - ND not detented - NQ concentration can not be quantified due to possible interferences or coelutions. SDL Sample Detection Limit (Limit of Detection adjusted for dilutions). SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). - INV Invalid. - J Reported concentration is below SDL. L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. M Result modified from previous result. T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. - F Established acceptance criteria was not met due to factors outside the laboratory's control. H Not all associated hold time specifications were met. Data may be biased. C Sample received with a missing or broken eastedy sent. - R Sample received with a missing or incomplete chain of custody, 1 Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. W Sample received with insufficient preservation. TCEQ laboratory customer support may be reached at Jaydeep.Patel@tceq.texas.gov The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Tony Walker et al. Page 8 June 16, 2015 Table 1. Comparison of Monitored Concentrations in Lab Sample 1505011-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1505011-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 0.6 | ND | | 0.26 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 0.6 | ND | | 0.2 | | 1,1,2-Trichloroethane | Not Available | 100 | 0.6 | ND | | 0.21 | | 1,1-Dichloroethane | Not Available | 1,000 | 0.6 | ND | | 0.19 | | 1,1-Dichloroethylene | Not Available | 180 | 0.6 | ND | | 0.18 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 0.6 | ND | | 0.27 | | 1,2,4-Trimethylbenzene | 140 | 250 | 0.6 | 0.31 | L | 0.27 | | 1,2-Dibromoethane | Not Available | 0.5 | 0.6 | ND | | 0.2 | | 1,2-Dichloroethane | 6,000 | 40 | 0.6 | 0.01 | J | 0.27 | | 1,2-Dichloropropane | 250 | 100 | 0.6 | ND | | 0.17 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 1.2 | 0.22 | J | 0.25 | | 1,3-Butadiene | 230 | 1,700 | 0.6 | ND | | 0.27 | | 1-Butene | 360 | 27,000 | 0.6 | 0.19 | J | 0.2 | | 1-Pentene | 100 | 2,600 | 0.6 | ND | | 0.27 | | 2,2,4-Trimethylpentane | 670 | 750 | 0.6 | 0.05 | J | 0.24 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 0.6 | ND | | 0.21 | | 2,3,4-Trimethylpentane | Not Available | 750 | 1.2 | 0.03 | J | 0.24 | | 2,3-Dimethylbutane | 420 | 990 | 1.2 | 0.06 | J | 0.28 | | 2,3-Dimethylpentane | 4,500 | 850 | 0.6 | ND | | 0.26 | | 2,4-Dimethylpentane | 940 | 850 | 1.2 | 0.08 | J | 0.27 | | 2-Chloropentane (as chloroethane) | Not Available | 240 | 0.6 | ND | | 0.27 | | 2-Methyl-1-Pentene +1-Hexene | 140 | 500 | 2.4 | ND | | 0.2 | | 2-Methyl-2-Butene | Not Available | 2,600 | 0.6 | 0.01 | J | 0.23 | | 2-Methylheptane | 110 | 750 | 1.2 | 2.1 | | 0.2 | | 2-Methylhexane | 420 | 750 | 0.6 | 1.3 | | 0.27 | Tony Walker et al. Page 9 June 16, 2015 | Lab Sample ID | 1505011-001 | | | | | | |---------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylpentane (Isohexane) | 7,000 | 850 | 0.6 | 0.53 | L | 0.27 | | 3-Methyl-1-Butene | 250 | 8,000 | 0.6 | ND | | 0.23 | | 3-Methylheptane | 1,500 | 750 | 1.2 | 1.4 | | 0.23 | | 3-Methylhexane | 840 | 750 | 0.6 | 1.2 | | 0.2 | | 3-Methylpentane | 8,900 | 1,000 | 0.6 | ND | | 0.23 | | 4-Methyl-1-Pentene (as hexene) | 140 | 500 | 1.2 | ND | | 0.22 | | Acetylene | Not Available | 25,000 | 1.2 | ND | Т | 0.5 | | Benzene | 2,700 | 180 | 0.6 | 0.32 | L | 0.27 | | Bromomethane (methyl bromide) | Not Available | 30 | 0.6 | 0.02 | J | 0.27 | | c-1,3-Dichloropropylene | Not Available | 10 | 0.6 | ND | | 0.2 | | c-2-Butene | 2,100 | 15,000 | 0.6 | 0.01 | J | 0.27 | | c-2-Hexene | 140 | 500 | 1.2 | ND | | 0.27 | | c-2-Pentene | Not Available | 2,600 | 1.2 | ND | | 0.25 | | Carbon Tetrachloride | 4,600 | 20 | 0.6 | 0.09 | J | 0.27 | | Chlorobenzene (phenyl chloride) | 1,300 | 100 | 0.6 | ND | | 0.27 | | Chloroform (trichloromethane) | 3,800 | 20 | 0.6 | 0.02 | J | 0.21 | | Cyclohexane | 2,500 | 1,000 | 0.6 | ND | | 0.24 | | Cyclopentane | Not Available | 1,200 | 0.6 | 0.02 | J | 0.27 | | Cyclopentene | Not Available | 2,900 | 0.6 | ND | | 0.2 | | Dichlorodifluoromethane | Not Available | 10,000 | 0.6 | 0.48 | L | 0.2 | | Ethane | Not Available | Simple Asphyxiant* | 1.2 | 3.8 | Т | 0.5 | | Ethylbenzene | 170 | 20,000 | 1.2 | ND | | 0.27 | | Ethylene | 270,000 | 500,000 | 1.2 | 0.69 | L,T | 0.5 | | Isobutane | Not Available | 33,000 | 1.2 | 0.24 | L | 0.23 | | Isopentane (2-methylbutane) | 1,300 | 68,000 | 2.4 | 0.41 | L | 0.27 | | Isoprene | 48 | 20 | 0.6 | 0.44 | L | 0.27 | Tony Walker et al. Page 10 June 16, 2015 | Lab Sample ID | 1505011-001 | | | | | | |--------------------------------------|----------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isopropylbenzene (cumene) | 48 | 500 | 0.6 | 0.01 | J | 0.24 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 2.4 | 0.8 | L | 0.27 | | m-Diethylbenzene | 70 | 460 | 1.2 | 0.01 | J | 0.27 | | Methyl Chloride (chloromethane) | Not Available | 500 | 0.6 | 1 | | 0.2 | | Methylcyclohexane | 150 | 4,000 | 1.2 | 2.2 | | 0.26 | | Methylcyclopentane | 1,700 | 750 | 1.2 | 0.15 | J | 0.27 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 0.6 | 0.08 | J | 0.14 | | m-Ethyltoluene | 18 | 250 | 0.6 | 0.1 | J | 0.11 | | n-Butane | 1,200,000 | 92,000 | 1.2 | 0.57 | L | 0.2 | | n-Decane | 620 | 1,750 | 1.2 | 1.8 | | 0.27 | | n-Heptane | 670 | 850 | 1.2 | 3.8 | | 0.25 | | n-Hexane | 1,500 | 1,800 | 1.2 | 1.2 | | 0.2 | | n-Nonane | Not Available | 2,000 | 0.6 | 2.2 | | 0.22 | | n-Octane | 1,700 | 750 | 1.2 | 4.3 | | 0.19 | | n-Pentane | 1,400 | 68,000 | 2.4 | ND | | 0.27 | | n-Propylbenzene | 48 | 500 | 0.6 | 0.04 | J | 0.27 | | n-Undecane | 870 | 550 | 1.2 | 1.6 | | 0.27 | | o-Ethyltoluene | 74 | 250 | 1.2 | ND | | 0.13 | | o-Xylene | 380 | 1,700 | 1.2 | 0.15 | J | 0.27 | | p-Diethylbenzene | 70 | 460 | 0.6 | ND | | 0.27 | | p-Ethyltoluene | 8.1 | 250 | 1.2 | ND | | 0.16 | | Propane | 1,500,000 | Simple Asphyxiant* | 1.2 | 1.4 | Т | 0.5 | | Propylene | 13,000 | Simple Asphyxiant* | 1.2 | ND | T | 0.5 | | Styrene | 25 | 5,100 | 1.2 | 0.01 | J | 0.27 | | t-1,3-Dichloropropylene | Not Available | 10 | 0.6 | 0.24 | L | 0.2 | | t-2-Butene | 2,100 | 15,000 | 0.6 | ND | | 0.18 | Tony Walker et al. Page 11 June 16, 2015 | Lab Sample ID | 1505011-001 | 1505011-001 | | | | | | | | |------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------|--|--|--| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | | | t-2-Hexene | 140 | 500 | 1.2 | ND | | 0.27 | | | | | t-2-Pentene | Not Available | 2,600 | 1.2 | ND | | 0.27 | | | | | Tetrachloroethylene | 770 | 1,000 | 0.6 | ND | | 0.24 | | | | | Toluene | 920 | 4,000 | 0.6 | 0.36 | L | 0.27 | | | | | Trichloroethylene | 3,900 | 100 | 0.6 | ND | | 0.29 | | | | | Trichlorofluoromethane | 5,000 | 10,000 | 0.6 | 0.22 | J | 0.29 | | | | | Vinyl Chloride | Not Available | 26,000 | 0.6 | ND | | 0.17 | | | | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. J - Reported concentration is below SDL. L - Reported concentration is at or above the SDL and is below the lower limit of quantitation. E - Reported concentration exceeds the upper limit of instrument calibration. M - Result modified from previous result. T - Data was not confirmed by a confirmational analysis. Data is tentatively identified. F - Established acceptance criteria were not met due to factors outside the laboratory's control. H – Not all associated hold time specifications were met. Data may be biased. C - Sample received with a missing or broken custody seal. R - Sample received with a missing or incomplete chain of custody. I - Sample received without a legible unique identifier. G - Sample received in an improper container. U - Sample received with insufficient sample volume. W - Sample received with insufficient preservation. Tony Walker et al. Page 12 June 16, 2015 Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs) Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | AMICV (ppb _v) | | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|---------------------------|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 2,400 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | 2,300 | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | Tony Walker et al. Page 13 June 16, 2015 c-2-Hexene c-2-Pentene Cyclohexane Carbon Tetrachloride Chlorobenzene (phenyl chloride) Chloroform (trichloromethane) | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---|---|---| | Not Available | n-Octane | 75 | | 75 | n-Pentane | 8,000 | | 75 | n-Propylbenzene | 50 | | 85 | n-Undecane | 55 | | 800 | o-Ethyltoluene | 25 | | 75 | o-Xylene | 140 | | 75 | p-Diethylbenzene | 46 | | 100 | p-Ethyltoluene | 25 | | 50 | Propane | Simple Asphyxiant* | | 2,500 | Propylene | Simple Asphyxiant* | | 1.4 | Styrene | 110 | | 3 | t-1,3-Dichloropropylene | 1 | | 1 | t-2-Butene | 690 | | 690 | t-2-Hexene | 50 | | | AMCV (ppb _v) Not Available 75 75 85 800 75 75 100 50 2,500 1.4 3 1 | AMCV (ppb _v) Not Available 75 n-Pentane 75 n-Propylbenzene 85 n-Undecane 800 o-Ethyltoluene 75 o-Xylene 75 p-Diethylbenzene 100 p-Ethyltoluene 50 Propane 2,500 Propylene 1.4 Styrene 3 t-1,3-Dichloropropylene 1 t-2-Butene | t-2-Pentene Toluene Tetrachloroethylene*** Trichlorofluoromethane Trichloroethylene Vinyl Chloride Not Available 3.8 10 1,100 1,000 0.45 50 10 2 100 Not Available ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.